Using Euler's Theorem to Simplify Powers Modulus n

Euler's Theorem states that for any number  
\[n\]
,  
\[a^{\phi(n)} \equiv 1 \; (mod \; n)\]
  where  
\[\phi(n)\]
  is the number of positive integers up to  
\[n\]
  that are prime relative to  
\[n\]
.
We can use Euler's Theorem in the following way.
Find  
\[23^{23} \; (mod \; 15)\]
.
The greatest common divisor of 15 and 23 is 1, and  
\[\phi (15)=8\]
, Euler's Theorem tells us that  
\[23^8 \equiv 1 \; (mod \; 15)\]
. Then
\[\begin{equation} \begin{aligned} 23^{23} & \equiv ((23)^8)^2 \times 23^7 \; (mod \; 15) \\ & \equiv 1^2 \times 8^7 \; (mod \; 15) \\ & \equiv 64^3 \times 8 \; (mod \; 15) \\ & \equiv 4^3 \times 8 \; (mod \; 15) \\ & \equiv 64 \times 8 \; (mod \; 15) \\ & \equiv 4 \times 8 \; (mod \; 15) \\ & \equiv 32 \; (mod \; 15) \\ & \equiv 2 \; (mod \; 15) \end{aligned} \end{equation}\]

Add comment

Security code
Refresh