Call Us 07766496223
Theorem (Solution of Pell's Equation)
If the continued fraction of  
\[\sqrt{n}\]
  has cycle length  
\[s\]
  then 
\[p^2_{rs}-nq^2_{rs} =(-1)^{rs}, \; r=1, \; 2,...\]
.
All solutions of  
\[x^2-ny^2= \pm 1\]
  are given in this way.
\[\sqrt{14}= [ 3, \lt 1, \; 2, \; 1, \; 6 \gt ]\]
  has cycle length  
\[s=4\]
  and the convergents  
\[\frac{p_4}{q_4}, \; \frac{p_8}{q_8}, \; \frac{p_{12}}{q_{12}},...\]
  satisfy  
\[p^2_k-14q^2_k=1\]
.
\[\sqrt{29}= [ 5, \lt 2, \; 1, \; 1, \; 2, \; 10 \gt ]\]
  has cycle length  
\[s=5\]
  and the convergents  
\[\frac{p_5}{q_5}, \; \frac{p_{10}}{q_{10}}, \; \frac{p_{15}}{q_{15}},...\]
  satisfy  
\[p^2_k-14q^2_k=-1\]
.
Proof
For each  
\[r \gt 1\]
  we can write  
\[\sqrt{n}\]
  as the continued fraction  
\[[ a_1, a_2, a_3,...,a_3, a_2, 2a_1,a_2,a_3,...,a_3,a_2,x ] \]
  with  
\[rs+1\]
  partial quotients, the last of which  
\[x\]
  is not an integer. In fact
\[\begin{equation} \begin{aligned} x &= [ \lt 2a_1, a_2, a_3,...,a_2, a_1 \gt ] \\ &= a_1+ [ \lt 2a_1, a_2, a_3,...,a_3,a_2, 2a_1 \gt ] \\ &= a_1+ \sqrt{n} \end{aligned} \end{equation}\]

The final three convergents of the above continued fraction for  
\[\sqrt{n}\]
  are  
\[\frac{p_{rs-1}}{q_{rs-1}}, \; \frac{p_{rs}}{q_{rs}}, \; \frac{xp_{rs}+p_{rs-1}}{xq_{rs}+q_{rs-1}}\]
.
The last of these is equal to  
\[\sqrt{n}\]
  so  
\[\sqrt{n} (xq_{rs}+q_{rs-1} )=xp_{rs}+p_{rs-1}\]
. Use  
\[x=a_1+\sqrt{n}\]
  to get  
\[\sqrt{n} ((a_1+\sqrt{n})q_{rs}+q_{rs-1} )=(a_1+\sqrt{n})p_{rs}+p_{rs-1}\]
.
The last expression simplifies to  
\[\sqrt{n}(a_1q_{rs}+q_{rs-1}-p_{rs})=a_1p_{rs}+p_{rs-1}-nq_{rs}\]

The right hand side of this equation is an integer while the left hand side is irrational, so both sides must equal zero. Hence
\[a_1q_{rs}+q_{rs-1}=p_{rs}\]
  (1)
\[a_1p_{rs}+p_{rs-1}=nq_{rs}\]
  (2)
\[p_{rs}\]
(1) minus  
\[q_{rs}\]
(2) gives
\[p^2_{rs}-nq^2_{rs}=p_{rs}q_{rs-1}-p_{rs-1}q_{rs}=(-1)^{rs}\]

Using Properties of Convergents of Finite Continued Fractions for the last step/