Call Us 07766496223
To find solutions of Pell's equation  
\[x^2-11y^2=1\]
  (using this theorem on Solutions of Pell's Equation are Convergents of an Infinite Continued Fraction)find the convergents of the continued fraction  
\[[ 3 \lt 3, 6 \gt ] = [ 3,3,6,3,6,3,6,... ]\]
.
The convergents are
\[\frac{3}{1}\]

\[3+ \frac{1}{3}=\frac{10}{3}\]

\[3+\frac{1}{3+\frac{1}{6}}=\frac{63}{19}\]

\[3+\frac{1}{3+\frac{1}{6+\frac{1}{3}}}=\frac{199}{60}\]

and so on.
The solutions are found from the 2nd, 4th (and even numbered convergents)  
\[x_1=10, \; y_1=3, \; x_2=199, \; y_2=60\]
  and so on.