\[n\] |
\[n-1\] |
\[n(n-1)\] |
\[\frac{n}{2}(n-1)\] |
| 0 | 1 | 0 | 0, 5 |
| 1 | 2 | 2 | 1, 6 |
| 2 | 3 | 6 | 3, 8 |
| 3 | 4 | 2 | 1, 6 |
| 4 | 5 | 0 | 0, 5 |
| 5 | 6 | 0 | 0, 5 |
| 6 | 7 | 2 | 1, 6 |
| 7 | 8 | 6 | 3, 8 |
| 8 | 9 | 2 | 1, 6 |
| 9 | 0 | 0 | 0, 5 |
Possible Last Digits of Triangular Numbers
All possible last digits of triangular numbers are derived in the table.
By exhaustion the only possible last digits of a triangular number are 0, 1, 3, 5, 6, or 8,