| \[n\] | \[n-1\] | \[n(n-1)\] | \[\frac{n}{2}(n-1)\] | 
| 0 | 1 | 0 | 0, 5 | 
| 1 | 2 | 2 | 1, 6 | 
| 2 | 3 | 6 | 3, 8 | 
| 3 | 4 | 2 | 1, 6 | 
| 4 | 5 | 0 | 0, 5 | 
| 5 | 6 | 0 | 0, 5 | 
| 6 | 7 | 2 | 1, 6 | 
| 7 | 8 | 6 | 3, 8 | 
| 8 | 9 | 2 | 1, 6 | 
| 9 | 0 | 0 | 0, 5 | 
Possible Last Digits of Triangular Numbers
        All possible last digits of triangular numbers are derived in the table.
By exhaustion the only possible last digits of a triangular number are 0, 1, 3, 5, 6, or 8,