\[n\] |
\[n-1\] |
\[n(n-1)\] |
\[\frac{n}{2}(n-1)\] |
0 | 1 | 0 | 0, 5 |
1 | 2 | 2 | 1, 6 |
2 | 3 | 6 | 3, 8 |
3 | 4 | 2 | 1, 6 |
4 | 5 | 0 | 0, 5 |
5 | 6 | 0 | 0, 5 |
6 | 7 | 2 | 1, 6 |
7 | 8 | 6 | 3, 8 |
8 | 9 | 2 | 1, 6 |
9 | 0 | 0 | 0, 5 |
Possible Last Digits of Triangular Numbers
All possible last digits of triangular numbers are derived in the table.
By exhaustion the only possible last digits of a triangular number are 0, 1, 3, 5, 6, or 8,