Call Us 07766496223
Suppose  
\[p\]
  is an odd prime.
Then  
\[\phi (2(2p-1))= \phi (2) \phi (2p-1)\]

Where  
\[\phi (n)\]
  is the number of integers up to  
\[n\]
  which are prime relative to  
\[n\]
.
If  
\[2p-1\]
  is also prime, then
\[\phi (2p-1)=2p-2=2(p-1)= 2 \phi (p)= \phi (4p)= \phi (2(2p-1))\]

When  
\[p, \; 2(2p-1)=n\]
  are odd primes then  
\[\phi (n)= \phi (n+2)\]
.