Call Us 07766496223
Theorem
Let  
\[p, \; q\]
  be distinct primes, then  
\[p^{q-1}+q^{p-1} \equiv 1 \; (mod \; pq)\]
.
Proof
From Fermat's Little Theorem  
\[p^{q-1} \equiv 1 \; (mod \; q), \; q^{p-1} \equiv 1 \; (mod \; p)\]
.
Hence  
\[p^{q-1} -1=mq, \; q^{p-1}-1=np\]
.
Multiplying these together gives  
\[(p^{q-1} -1)(q^{p-1}-1=mqnp\]
.
\[(p^{q-1}q^{p-1}-p^{q-1}-q^{p-1}+1=mmqp\]
.
\[-p^{q-1}-q^{p-1}+1 \equiv 0 \; (mod \; pq)\]
.
\[p^{q-1}+q^{p-1} \equiv 1 \; (mod \; pq)\]
.