Call Us 07766496223
Theorem
If  
\[p\]
  is a prime number then  
\[(p-1)! \equiv p-1 \; (mod \; 1+2+...+p-1)\]
.
Proof
We can write the theorem as  
\[(p-1)! \equiv p-1 \; (mod \; \frac{p(p-1)}{2})\]
.
Wilson's Theorem states  
\[(p-1)! \equiv -1 \equiv -1 \; (mod \; p) \rightarrow (p-1)! \equiv -1 \equiv p-1 \; (mod \; p)\]
.
\[(p-1)! \equiv p-1 \; (mod \; \frac{p-1}{2})\]
  is true since  
\[\frac{p-1}{2}\]
  divides both sides.  
\[gcd(p, \frac{p-1}{2})\]
  so  
\[(p-1)! \equiv p-1 \; (mod \; \frac{p(p-1)}{2})\]
.