Factorisation of Polynomials Modulo p

Theorem
Let  
\[p\]
  be prime and let  
\[b_1, \; b_2,...,b_r\]
  be incongruent solutions of  
\[P(x) \equiv 0 \; (mod \; p)\]
  where  
\[P(x)\]
  is a polynomial of degree  
\[k\]
. Then  
\[P(x) \equiv (x-b_1)(x-b_2)...(x-b_r)P_r(x) \; (mod \; p)\]
  where  
\[P_r(x)\]
  is a polynomial of degree  
\[k-r\]
.
Proof
Lagrange's Theorem tells us that  
\[P(x) \equiv (x-b_1)P_1(x) \; (mod \; p)\]
  where  
\[P_1(x)\]
  is a polynomial of degree  
\[k-1\]
.
\[P(b_2) \equiv 0 \; (mod \; p) \rightarrow (b_2-b_1)P_1(b_2) \equiv 0 \; (mod p)\]

\[p\]
  does not divide  
\[b_2-b_1\]
  since  
\[b_1, \; b_2\]
  are incongruent modulo  
\[p\]
, hence  
\[P_1(b_2) \equiv 0 \; (mod \; p)\]
  by Euclid's Lemma. We can use the Factorising Theorem for polynomials to obtain  
\[P_1(x) \equiv (x-b_2) P_2(x) \; (mod \; p) \equiv (x-b_1)(x-b_2)P_2(x) \; (mod \; p)\]
  where  
\[P_2(x)\]
  is a polynomial of degree  
\[k-2\]
.
The result is reached when all  
\[r\]
  solutions have been processed in this way.

Add comment

Security code
Refresh