Call Us 07766496223
Theorem (Euclid's Lemma)
If  
\[a | bc\]
  with the greatest common divisor of  
\[a, \; b\]
  equal to 1, then  
\[a | c\]
.
Proof
\[a | bc\]
  and the greatest common divisor of
\[a, \; b\]
  eqials 1, so there exist integers
\[k, \; m, \; n\]
  such that
\[bc=ka, \; ma+nb=1\]
.
Multiply though by
\[c\]
  to give  
\[mac+nbc=c\]
  and use
\[bc=ka\]
  to give
\[mac+nka=c \rightarrow a(mc+nk)=c \rightarrow a | c\]