Call Us 07766496223
Theorem
If  
\[p\]
  is an odd prime then  
\[(a/p)=(-1)^{\alpha (a, \; p)}\]
  where  
\[\alpha (a, \; p)= \sum_{k=1}^{(p-1)/2} int (\frac{ka}{p} )\]
 
Proof
Let  
\[S= \{a, \; 2a, \; 3a,..., \; \frac{p-1}{2} \}\]
. Replace each element of  
\[S\]
  by its least residue modulo  
\[p\]
  and list the results in ascending order to give  
\[S'= \{ b_1, \; b_2, \; b_3,..., \; b_m, \; c_1, \; c_2,..., \; c_n \}\]
  where  
\[b_m \lt \frac{p}{2} \lt c_1\]
. According to the The Division Algorithm Proof we can write  
\[ka = p \times int (\frac{ka}{p})+r\]
  where  
\[r \in S'\]
. Let  
\[k\]
  run from 1 to  
\[\frac{p-1}{2}\]
  and adding up the resulting equations we get
\[\sum_{k=1}^{(p-1)/2} ka = \sum_{k=1}^{(p-1)/2} p \times int (\frac{ka}{p}) + \sum_{i=1}^m b_i + \sum_{i=1}^n c_n\]
  (1)
From  
\[S'\]
  we can construct the set  
\[S''= \{b_1, \; b_2,..., \; b_m, \; p-c_1, \; p-c_2,..., \; p-c_n \} = \{1, \; 2,..., \frac{p-1}{2} \}\]
  by reordering.
Adding the elements of  
\[S''\]
  gives
\[\sum_{k=1}^{(p-1)/2}k= \sum_{i=1}^mb_i+ \sum_{i=1}^n(p-c_i)=\sum_{i=1}^mb_i+mp - \sum_{i=1}^n c_i\]
  (2)
(1)-(2) gives
\[\sum_{k=1}^{(p-1)/2}ka - \sum_{k=1}^{(p-1)/2}k=\sum_{k=1}^{(p-1)/2} p \times int (\frac{ka}{p}) +2 \sum_{i=1}^n c_i-pn\]

We can write this as
\[(a-1) \sum_{k=1}^{(p-1)/2} =p \times \alpha (a, \; p) +2 \sum_{i=1}^n c_i-pn\]

Writing this equation modulo 2 we get  
\[p \times \alpha (a, \; p)-pn=0 \; (mod \; 2)\]
.
\[p\]
  is odd so we can write  
\[p \times \alpha (a, \; p)=n \; (mod \; 2)\]
.
Now use Gauss's Lemma for Congruences give  
\[(a/p)=(-1)^{\alpha (a, \; p)}\]
.