Call Us 07766496223
Let  
\[x \gt 1\]
  have finite continued fraction  
\[[ a_1,a_2,...,a_n ]\]
. Then  
\[x=a_1+ \frac{1}{a_2+ \frac{1}{a_3+\frac{1}{\ddots + \frac{1}{a_{n-1} + \frac{1}{a_n}}}}}\]
.
Then  
\[\frac{1}{x} =0+ \frac{1}{a_1+ \frac{1}{a_2+ \frac{1}{a_3+\frac{1}{\ddots + \frac{1}{a_{n-1} + \frac{1}{a_n}}}}}} \]
.
The finite continued fraction of  
\[\frac{1}{x}\]
  is  
\[[ 0,a_1,a_2,...,a_n ]\]
.
Conversely if  
\[0 \lt x \lt 1\]
  and the finite continued fraction of  
\[x\]
  is  
\[[ 0,a_1,a_2,...,a_n ]\]
, then the finite continued fraction of  
\[\frac{1}{x}\]
  is  
\[[a_1,a_2,...,a_n ]\]
.