Call Us 07766496223
If a number of one of the forms  
\[2n^2-1, \; 2n^2+1\]
  is square (
\[{}=m^2\]
)then  
\[(nm)^2\]
  is triangular, since
\[(nm)^2=n^2m^2=n^2(2n^2-1)=\frac{2n^2}{2}(2n^2-1)=\frac{k}{2}(k-1)=\frac{j}{2}(j+1)\]

where first  
\[k=2n^2\]
  then  
\[k=j+1\]
.
or
\[(nm)^2=n^2m^2=n^2(2n^2+1)=\frac{2n^2}{2}(2n^2+1)=\frac{k}{2}(k+1)\]

where first  
\[k=2n^2\]
.