Proof That The Cartesian Product of a Metrizable Space With Itself is Metrizable


If a spaceis metrizable, thenis metrizable.


A spaceis said to be metrizable if a metriccan be defined onsuch that the topology induced byis

Define the topology onin the usual way, so that ifthen

Define the metric onas

The topology induced onisandis metrizable.

Add comment

Security code