Call Us 07766496223
Given a curve  
\[\mathbf{r}=\mathbf{r}(x,y)\]
  and a vector field  
\[\mathbf{F}(x,y)=F_1(x,y) \mathbf{i} + F_2 (x,y) \mathbf{j}\]
, to evaluate the integral  
\[\int_C F_T d r\]
  where  
\[F_T\]
  is the component of  
\[\mathbf{F}\]
  along the curve, write  
\[\int_C F_T d r = \int_C \mathbf{F} \cdot d \mathbf{r}=\int_C (F_1 \mathbf{i} + F_2 \mathbf{j}) \cdot (dx \mathbf{i} +dy \mathbf{j})=\int_C F_1 dx + F_2 dy\]

We can parametrize the curve  
\[\mathbf{r}=\mathbf{r}(x(s),y(s))\]
  then
Where  
\[s\]
  is the distance along the curve.
\[\int_C F_T d r=\int_C F_1 dx + F_2 dy =\int_C (F_1 (s)\frac{dx}{ds} + F_2(s) \frac{dy}{ds}) ds\]
.
Example: Evaluate  
\[\int_C F_T d r\]
  along thureve  
\[y=x\]
  from  
\[(0,0)\]
  to  
\[(1,1)\]
  for the vector field  
\[\mathbf{F}=(x^2 -y^2 ) \mathbf{i} + 2xy \mathbf{j}\]

For the line  
\[y=x\]
  use the parametrization  
\[x=\frac{s}{\sqrt{2}} , y=\frac{s}{\sqrt{2}}\]

When  
\[(x,y)=(0,0),(1,1)\]
   
\[s=0, \sqrt{2}\]
  respectively.
The integral becomes
\[\begin{equation} \begin{aligned} \int_C F_T d r &= \int_C (F_1 (s)\frac{dx}{ds} + F_2(s) ) ds \\ &= \int_0^{\sqrt{2}} (((\frac{s}{\sqrt{2}})^2 -(\frac{s}{\sqrt{2}})^2) +2 \frac{s}{\sqrt{2}} \frac{s}{\sqrt{2}}) \frac{dy}{ds}) \frac{1}{\sqrt{2}}ds \\ &= \int_0^{\sqrt{2}} s^2 \frac{1}{\sqrt{2}}ds \\ &= \frac{1}{\sqrt{2}} [\frac{s^3}{3}]_0^{\sqrt{2}} \\ &= \frac{1}{\sqrt{2}} \frac{(\sqrt{2})^3}{3}-0 \\ &= \frac{2 }{3} \end{aligned} \end{equation}\]
.