Theorem
 If  
\[\phi\]
  is a harmonic function on a volume  \[V\]
  with surface  \[S\]
  on which  \[\phi =0\]
  then  \[\phi =0\]
  on  \[V\]
.Proof
By Green's First Theorem for Harmonic Functions, if
\[\psi = \phi\]
  we have\[\int \int_V (\mathbf{\nabla \phi} ) \cdot (\mathbf{\nabla \phi} ) dV = \int \int_S \phi \frac{\partial \phi}{\partial n} dS \]
By the statement in the theorem
\[\phi =0\]
  on  \[S\]
. \[\int \int_V (\mathbf{\nabla \phi} ) \cdot (\mathbf{\nabla \phi} ) dV = 0\]
Hence
\[\phi = CONSTANT\]
  on  \[S\]
.But
\[\phi\]
  is continuous and twice differentiable in  \[V\]
, so  \[\phi =0\]
  throughout  \[V\]
.