Call Us 07766496223
FIn English, the gradient of a scalar field  
\[\phi\]
,  
\[\mathbf{\nabla} \phi\]
  at a point is the rate of change of
\[\phi\]
  in the direction normal to the surface  
\[S\]
  defined by  
\[\phi = CONSTANT\]

Mathematically,  
\[\mathbf{\nabla} \phi = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_S \phi \cdot \mathbf{n} dS\]

To show this use the identity  
\[\int \int \int_{V} \nabla \phi dV = \int \int_S \phi \mathbf{n} dS \]

Taking the dot product with  
\[\mathbf{i}\]
  gives
\[\int \int \int_{V} \nabla \phi \cdot \mathbf{i} dV = \int \int_S \phi \mathbf{n} \cdot \mathbf{i} dS \]

By the Mean Value Theorem for volumes,  
\[\int \int \int_{\delta V} \mathbf{\nabla} \phi dV =(\mathbf{\nabla} \phi)_{(x_0 , y_0 , z_0)} \delta V \rightarrow (\mathbf{\nabla} \phi)_{(x_0 , y_0 , z_0)} = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_S \phi \mathbf{n} dS, \: (x_0 , y_0 , z_0) \in \delta V \]

Hence  
\[\mathbf{\nabla} \phi_{(x_0 , y_0 , z_0 )} \cdot \mathbf{i} = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_S \phi \mathbf{n} \cdot \mathbf{i} dS, \: (x_0 , y_0 , z_0) \in \delta V\]

Similarly  
\[\mathbf{\nabla} \phi_{(x_0 , y_0 , z_0 )} \cdot \mathbf{j} = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_S \phi \mathbf{n} \cdot \mathbf{j} dS, \: (x_0 , y_0 , z_0) \in \delta V\]

 
\[\mathbf{\nabla} \phi_{(x_0 , y_0 , z_0 )} \cdot \mathbf{k} = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_S \phi \mathbf{n} \cdot \mathbf{k} dS, \: (x_0 , y_0 , z_0) \in \delta V\]

Then  
\[\mathbf{\nabla} \phi = (\mathbf{\nabla} \cdot \mathbf{i} ) \mathbf{i} + (\mathbf{\nabla} \cdot \mathbf{j} ) \mathbf{j} + (\mathbf{\nabla} \cdot \mathbf{k} ) \mathbf{k}\]

\[\mathbf{n} = (\mathbf{n} \cdot \mathbf{i} ) \mathbf{i} + (\mathbf{n} \cdot \mathbf{j} ) \mathbf{j} + (\mathbf{n} \cdot \mathbf{k} ) \mathbf{k}\]

Hence  
\[\mathbf{\nabla} \phi = lim_{\delta V \rightarrow 0} \frac{1}{\delta V} \int \int_S \phi \cdot \mathbf{n} dS\]