Call Us 07766496223
Let  
\[x=(x_1 , x_2 ,...,x_n) \in \mathbb{R}^n\]
  with each  
\[x_i\]
  a real number, be an n dimensional vector.
By  
\[dx_i\]
  we denote the function that assigns to a vector  
\[a \in \mathbb{R}^n\]
  its ith component i.e.  
\[dx_i (\mathbf{a}) =a_i\]

If then  
\[\mathbf{a} =(2,1,6)\]
  then
\[dx_1 (\mathbf{a})=2\]

\[dx_2 (\mathbf{a})=1\]

\[dx_3 (\mathbf{a})=6\]

We can form new functions by taking linear combinations of the
\[dx_i \]

such as
\[\alpha_1 dx_1+ \alpha_2 dx_2 + ... + \alpha_n dx_n\]

\[f_1 , f_2 ,... , f_n\]
  are real valued functions defined on  
\[\mathbb{R}^n\]
  or a region of  
\[\mathbb{R}^n\]

\[f_k : D \rightarrow \mathbb{R} \: k=1,2,...,n\]

Then for each  
\[\mathbf{x}x \in D\]
  we can form the linear combination
\[\omega_{\mathbf{x}} = f_1 (\mathbf{x}) dx_1 + f_2 (\mathbf{x}) dx_2 +...+ f_n (\mathbf{x}) dx_n \]

\[\omega_{\mathbf{x}} \]
  acts on a vector  
\[\mathbf{a} \in \mathbb{R}^n \]

\[\omega_{\mathbf{x}}(\mathbf{a}) = f_1 (\mathbf{x}) dx_1 (\mathbf{a}) + f_2 (\mathbf{x}) dx_2 (\mathbf{a}) +...+ f_n (\mathbf{x}) dx_n (\mathbf{a})\]

Example:  
\[\omega_{\mathbf{x}} = 2dx_1 + 3 dx_2 \]
  and
\[\mathbf{a} = (-1,-2)\]

\[\omega_{\mathbf{x}}(\mathbf{a}) = 2 \times -1 + 3 \times -2=-8\]