n - forms as Linear Transformations

A differential form is a linear operator, so if  
\[dx_1 \wedge dx_2 \wedge ... \wedge dx_n\]
  is n - form operating on vectors  
\[(\mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n )\]
  then
\[\begin{equation} \begin{aligned} & dx_1 \wedge dx_2 \wedge ... \wedge dx_n (k_1 (\mathbf{v}_1 , \mathbf{w}_2 , ..., \mathbf{v}_n ) + k_2 (\mathbf{w}_1 , \mathbf{w}_2 , ..., \mathbf{w}_n )) \\&= k_1 dx_1 \wedge dx_2 \wedge ... \wedge dx (k_1 (\mathbf{v}_1 , \mathbf{w}_2 , ..., \mathbf{v}_n ) \\ &+ k_2 dx_1 \wedge dx_2 \wedge ... \wedge dx_n (\mathbf{w}_1 , \mathbf{w}_2 , ..., \mathbf{w}_n )) \end{aligned} \end{equation} \]

This means that we can represent an n - form by a matrix.
The set of n forms is also linear for each value of n, so that if  
\[L_1\]
  and  
\[L_2\]
  are n - forms then so is  
\[k_1 L_1 + k_2 L_2\]
  where  
\[k_1 , \: k_2\]
  are scalars.

Add comment

Security code
Refresh