\[\mathbf{\nabla} \cdot \mathbf{E}=\frac{\rho}{\epsilon}\]
  \[\mathbf{\nabla} \cdot \mathbf{H}=0\]
  \[\mathbf{\nabla} \times \mathbf{E}=- \mu \frac{\partial H}{\partial t}\]
  \[\mathbf{\nabla} \times \mathbf{H}=- \epsilon \frac{\partial E}{\partial t}+  \mathbf{J}\]
  In the case of static fields,
\[\mathbf{E}, \mathbf{H}\]
  are constant, so that  \[\frac{\partial \mathbf{E}}{\partial t} =\frac{\partial \mathbf{H}}{\partial t}=0\]
Hence
\[\mathbf{\nabla} \cdot \mathbf{E}=\frac{\rho}{\epsilon}\]
  \[\mathbf{\nabla} \cdot \mathbf{H}=0\]
  \[\mathbf{\nabla} \times \mathbf{E}=0\]
  \[\mathbf{\nabla} \times \mathbf{H}=  \mathbf{J}\]