\[S\]
  about a axis through the origin perpendicular to the  \[xy\]
  plane  is given by  \[I_P \int_S r^2 \rho (x,y) ddS\]
  where  \[r^2 =x^2 +y^2 \]
The moment of inerta of the lamina about the
\[x\]
  and  \[y\]
  axes are  \[I_x = \int_S x^2 \rho (x,y) dS\]
  and  \[I_y = \int_S y^2 \rho (x,y) dS\]
  respectively.Adding these gives
\[I_x +I_y = \int_S x^2 \rho (x,y) dS + \int_S Y^2 \rho (x,y) dS = \int_S (x^2 +y^2 ) dS =I\]