Call Us 07766496223
To evaluate  
\[I= \int^1_0 \frac{x-1}{lnx} dx\]
  consider  
\[F( \alpha )= \int^1_0 \frac{x^{\alpha }}{lnx} dx\]
/
\[I=F(1)\]
.
\[\frac{dF(\alpha)}{d \alpha}= \int^1_0 \frac{x^{\alpha} lnx}{lnx} dx= \int^1_0 x^{\alpha} dx= \frac{1}{\alpha +1}\]
.
Then  
\[F (\alpha )= \int \frac{1}{\alpha +1} d \alpha = ln( \alpha +1) +c\]
.
When  
\[\alpha =0\]
   
\[F(0 )= \int^1_0 \frac{1-1}{lnx} dx=0\]
  so  
\[0=0+c \rightarrow c=0\]
.
Then  
\[I= \int^1_0 \frac{x-1}{lnx} dx = lim_{\alpha \rightarrow 1 }\int^1_0 \frac{x^{\alpha }-1}{lnx} dx=F(1)=ln2\]
.