Call Us 07766496223
Green's Theorem stats that if  
\[P,Q\]
  are differentiable functions on a region  
\[R\]
 in the plane with a boundary  
\[C\]
, then  
\[\oint_C P \:dx + Q \: dy = \int \int_R ( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} ) dx \: dy\]

  Green's Theorem can be written in vector form. Let  
\[P \mathbf{i} + Q \mathbf{j}\mathbf{a}\]

then the left hand side of Green's Theorem becomes  
\[\oint_C \mathbf{a} \cdot d \mathbf{r}\]

We can write  
\[ (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} ) \mathbf{k}= \mathbf{\nabla} \times \mathbf{a}\]
  with  
\[\mathbf{a}\]
  as defined above so the right hand side can be written  
\[\int \int_R ( \mathbf{\nabla} \times \mathbf{a}) \cdot \mathbf{k} \: dx \: dy \]

Green's Theorem can then be written  
\[\oint_C \mathbf{a} \cdot d \mathbf{r} =\int \int_R ( \mathbf{\nabla} \times \mathbf{a}) \cdot \mathbf{k} \: dx \: dy \]

We can also write  
\[\mathbf{a} \cdot d \mathbf{r} = \mathbf{a} \cdot \frac{d \mathbf{r}}{ds} ds = \mathbf{a} \cdot \mathbf{T} ds\]

where s is the distance along the curve. We can write  
\[\mathbf{T} = \mathbf{k} \times \mathbf{n}\]
  then
\[\oint_C \mathbf{a} \cdot d \mathbf{r} = \oint_C \mathbf{a} \cdot \mathbf{T} ds = \oint_C \mathbf{a} \cdot ( \mathbf{k} \times \mathbf{n}) ds = \oint_C (\mathbf{a} \times \mathbf{k}) \cdot \mathbf{n}) ds\]

We can define a vector  
\[\mathbf{b}= \mathbf{a} \times \mathbf{k}\]
.
Then  
\[\mathbf{b} = (P \mathbf{i} + Q \mathbf{j}) \times \mathbf{k} = Q \mathbf{i} - P \mathbf{j}\]
  and  
\[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \mathbf{\nabla} \cdot \mathbf{b}\]

The right hand side of Green's Theorem can then be written  
\[\int \int_R \mathbf{\nabla} \cdot \mathbf{b} \: dx \: dy\]
.
Green's Theorem can then be written  
\[\oint_C (\mathbf{a} \times \mathbf{k}) \cdot \mathbf{n}) ds = \int \int_R \mathbf{\nabla} \cdot \mathbf{b} \: dx \: dy\]
.