Call Us 07766496223
A point on a curve  
\[y=f(x)\]
  is a vertical point of inflexion if  
\[\]
  if  
\[\frac{dx}{dy}= \frac{d^2 x}{dy^2}=0\]
  or equivalently  
\[\frac{dy}{dx}= \frac{d^2 y}{dx^2}= \infty\]
.
If  
\[y=(x-2)^{1/3}\]
  then  
\[\frac{dy}{dx}=\frac{1}{3}(x-2)^{-2/3}, \; \frac{d^2y}{dx^2}=- \frac{2}{9}(x-2)^{-5/3}\]
.
When  
\[x=2\]
,  
\[\frac{dy}{dx}= \frac{d^2y}{dx^2}= \infty\]
  so  
\[x=2\]
  is a vertical point of inflexion.