Taylor/Mclaurin Series of an Inverse

We can find the Taylor or Mclaurin series of the inverse of a function  
\[f(x)\]
  about a point by collecting powers of  
\[(x-x_0)\]
  or  
\[x\]
  in the equation  
\[f^{-1}(f(x)) \]
  by assuming a Taylor series for  
\[f^{-1}(x)\]
  of the form  
\[\sum^{\infty}_{n=0}a_n(x-x_0)^n\]
  then using the identity  
\[x-x_0= f^{-1}(f(x))\]
  or  
\[x=f^{-1}(f(x))\]
  for a Mclaurin series, where  
\[f(x)\]
  is replaced by the Taylor or Mclaurin series of  
\[f(x)\]
, then solving iteratively for  
\[a_0, \; a_1, \; a_2, \; a_3,...\]
 
Example: Find the Mclaurin series for  
\[sin^{-1}x\]
  up to  
\[x^3\]
.
\[sinx=\sum^{\infty}_{n=0} \frac{(-1)^{n}x^{2n+1}}{(2n+1)!}=x- \frac{x^3}{3!}+-...\]

\[\begin{equation} \begin{aligned}x &= a_0+a_1(x- \frac{x^3}{3!}+...)+a_2(x- \frac{x^3}{3!}+...)^2+ a_3(x- \frac{x^3}{3!}+...)^3+...\\ &= a_0+a_1(x)+(a_2)x^2+(- \frac{a_1}{6} +a_3)x^3 \end{aligned} \end{equation}\]

We have then  
\[a_0=0, \; a_1=1, \; a_2=0, \; a_3= \frac{1}{6}\]
  and  
\[sin^{-1}x=x + \frac{x^3}{6}+...\]
.

Add comment

Security code
Refresh