If
\[A\]
  and  \[B\]
  are square invertible matrices then  \[(AB)^{-1} = B^{-1} A^{-1}\]
Proof
\[(AB)^{-1}\]
  is the inverse of  \[AB\]
  since  \[(AB)(AB)^{-1} - (AB)^{-1}AB=I\]
The inverse of a matrix is unique since if
\[C,\: C'\]
  are both inverses of  \[AB\]
  then  \[C(AB)=C'(AB)=I\]
  then  \[C(AB)(AB)^{-1}=C'(AB)(AB)^{-1}=(AB)^{-1} \rightarrow c=C'\]
.Multiply
\[(AB)^{-1}AB=I \]
  by  \[B^{-1}A^{-1}\]
.\[(AB)^{-1}ABBY^{-1}A^{-1}=B^{-1}A^{-1} \]
\[(AB)^{-1}AA^{-1}=B^{-1}A^{-1} \]
\[(AB)^{-1}AA^{-1}=B^{-1}A^{-1} \]
\[(AB)^{-1}I=B^{-1}A^{-1} \]
\[(AB)^{-1}=B^{-1}A^{-1} \]