Call Us 07766496223
Theorem
If  
\[A\]
  and  
\[B\]
  are square invertible matrices then  
\[(AB)^{-1} = B^{-1} A^{-1}\]

Proof
\[(AB)^{-1}\]
  is the inverse of  
\[AB\]
  since  
\[(AB)(AB)^{-1} - (AB)^{-1}AB=I\]

The inverse of a matrix is unique since if  
\[C,\: C'\]
  are both inverses of  
\[AB\]
  then  
\[C(AB)=C'(AB)=I\]
  then  
\[C(AB)(AB)^{-1}=C'(AB)(AB)^{-1}=(AB)^{-1} \rightarrow c=C'\]
.
Multiply  
\[(AB)^{-1}AB=I \]
  by  
\[B^{-1}A^{-1}\]
.
\[(AB)^{-1}ABBY^{-1}A^{-1}=B^{-1}A^{-1} \]

\[(AB)^{-1}AA^{-1}=B^{-1}A^{-1} \]

\[(AB)^{-1}AA^{-1}=B^{-1}A^{-1} \]

\[(AB)^{-1}I=B^{-1}A^{-1} \]

\[(AB)^{-1}=B^{-1}A^{-1} \]