The Projective Linear Transformation

Suppose we have points  
\[x=(x_1 , x_2 ,x_3), \: y=(y_1,y_2,y_3), \: z=(z_1,z_2,z_3) \in \mathbb(R)^3\]
  and the operation  
\[T(x,y,z) \rightarrow (x,y)\]

  is a linear transformation is called a projective transformation.
It is linear because
\[\begin{equation} \begin{aligned} T(\alpha x + \beta x' , \alpha y + \beta y' , \alpha z + \beta z') &= (\alpha x + \beta x' , \alpha y + \beta y') \\ &= (\alpha x, \alpha y)+( \beta x' + \beta y') \\ &=\alpha (x,y) + \beta (x',y') \\ &=\alpha T(x,y,z) +\beta (x',y'z') \end{aligned} \end{equation}\]

This particular example projects the  
\[\{ (x,y,z) \in \mathbb{R}^3 \}\]
  space onto the subspace  
\[\{(x,y) \in \mathbb{R}^2 \}\]
  the image of the transformation is the  
  plane and  
 whatever the value of  
  so the kernel of the transformation is the line along the  

You have no rights to post comments