\[T\]
  sends standard basis elements onto other standard basis element as follows:\[T(\mathbf{e}_j) =  \left\{ \begin{array}{11} \mathbf{e}_{j+1} &  j=0,...,n-1 \\ 0 & j=n \end{array}  \right. \]
\[T(\mathbf{e}_1)=\mathbf{e}_2, \: T(\mathbf{e}_2)=\mathbf{e}_3 , \: ..., T(\mathbf{e}_{n-1})=\mathbf{e}_n , \: T(\mathbf{e}_n) =0\]
Hence
\[T^n(\mathbf{e}_1)=0\]
If
\[A\]
  is the matrix representing  \[T\]
  then  \[A^n(\mathbf{e}_1)=0\]
\[A\]
  satisfies a polynomial of degree  \[n\]
  but cannot satisfy a polynomial of degree less than  \[n\]
  since  \[T^k(\mathbf{e}_1)=\mathbf{e}_{k+1}\]
  for  \[k  < n\]
.The minimum polynomial is
\[A^n\]
.