Example: Convert the linear programming problem below to canonical form.
Maximise
\[8x_1+15x_2+6x_3+20x_4\]
subject to \[x_1+3x_2+x_3+2x_4 \leq 9\]
\[2x_1+2x_2+2x_3+3x_4 \leq 12\]
\[3x_1++2x_2+2x_3+5x_4 \leq 16\]
\[x_1, \: x_2, \:, \: x_3, \: x_4 \geq 0\]
.Introduce slack variables
\[x_5, \: x_6, \: x_7\]
and rewrite the system asMaximise
\[8x_1+15x_2+6x_3+20x_4\]
subject to \[x_1+3x_2+x_3+2x_4 +x_5 = 9\]
\[2x_1+2x_2+2x_3+3x_4 +x_6= 12\]
\[3x_1++2x_2+2x_3+5x_4 +x_7= 16\]
\[x_1, \: x_2, \:, \: x_3, \: x_4, \: x_5, \: x_6, \: x_7 \geq 0\]
.The slack variables must all be greater than or equal to zero because there must be positive slack.