Consumed By\Fraction Of | Government Budget | Industrial Output | Household Budget |
Government | 0.4 | 0.2 | 0.3 |
Industry | 0.3 | 0.1 | 0.1 |
Households | 0.3 | 0.7 | 0.6 |
\[A=\left( \begin{array}{ccc} 0.4 & 0.2 & 0.3 \\ 0.3 & 0.1 & 0.1 \\ 0.3 & 0.7 & 0.6 \end{array} \right)\]
. The 'closed Leontief mode;' is one in which 'what goes into the economy is what comes out', so that if \[\mathbf{x} = \begin{pmatrix}Government \: Budget\\Industrial \: Output\\Household \: Budget\end{pmatrix}\]
then \[A \mathbf{x}=\mathbf{x}\]
.\[\left( \begin{array}{ccc} 0.4 & 0.2 & 0.3 \\ 0.3 & 0.1 & 0.1 \\ 0.3 & 0.7 & 0.6 \end{array} \right) \begin{pmatrix}G\\I\\H\end{pmatrix}=\begin{pmatrix}G\\I\\H\end{pmatrix}\]
.The solution to this, using Gaussian Elimination for example, is
\[\begin{pmatrix}G\\I\\H\end{pmatrix}=\begin{pmatrix}29/48\\5/16\\1\end{pmatrix}\]
.