Call Us 07766496223
Theorem
For any  
\[k \ge 3\]
,  
\[2^k\]
  does not have a primitive root.
Proof
\[\phi (2^k)=2^{k-1}\]
  where  
\[\phi\]
  is Euler's Totient Function. The  
\[2^{k-1}\]
  positive integers which are relatively prime to  
\[2^k\]
  are just the odd positive integers less than  
\[2^k\]
. We have to show that for any odd integer  
\[a\]
  there exists a positive integer  
\[r \lt 2^{k-1}\]
  such that  
\[a^r \equiv 1 \; (mod \; 2^k)\]
.  
\[r^{k-2}\]
  has this property for every value of  
\[a\]
.
Let  
\[P(k)\]
  be the proposition  
\[a^{2^{k-2}} \equiv 1 \; (mod \; 2^k ), \; gcd(a,2)=1\]
.
\[P(3)\]
  is correct since  
\[a^2 \equiv 1 \; (nod \; 2^3=8)\]
  for odd  
\[a\]
. Suppose then that  
\[P(m)\]
  is true for  
\[m \gt 3\]
. Then  
\[a^{m-2}=1+2^mt\]
  for some integer  
\[t\]
.
\[\begin{equation} \begin{aligned} (a^{m-2})^2 &=(1+2^mt)^2 \\ &= 1 +2(2^mt)+(2^mt)^2 \\ &= 1+2^{m+1}(t+t^22^{m-1}) \\ & \equiv 1 \; (mod \; 2^{m+1}) \end{aligned} \end{equation}\]

Hence  
\[a^{2^{m-1}} \equiv 1 \; (mod \; 2^{m+1})\]
, confirming  
\[P(m+1)\]
.