Call Us 07766496223
Euler's totient function, written  
\[\tau (n)\]
  is the number of distinct divisors of  
\[n\]
, including 1 and  
\[n\]
.
Theorem
If  
\[n=p_1^{k_1}p_2^{k_2}...p_r^{k_r}\]
  then  
\[\tau (n)=(k_1+1)(k_2+1)...(k_r+1)\]
.
Proof
Any divisor of  
\[n\]
  is of the form  
\[d=p_1^{s_1}p_2^{s_2}...p_r^{s_r}, \; s_r \le k_r \]
.
There are  
\[k_1+1\]
  possible values of  
\[s_1\]
  (
\[s_1=0,1,2,...,k_1\]
),  
\[k_2+1\]
  possible values of  
\[s_2\]
  and so on, so  
\[(k_1+1)(k_2+1)...(k_r+1)\]
  possible set of values of  
\[s_1, \; s_2,..., \; s_r\]
  and each distinct choice gives rise to a distinct divisor because of the uniqueness prime decomposition.