If
\[p, \; q\]
  are distinct odd primes then  \[(p/q)(q/p)=(-1)^{(p-1)(q-1)/4}\]
.Proof
Consider the rectangle which has coordinates
\[(0,0), \; (p/2,0), \; (p/2,q/2)\]
  and  \[(0,q/2)\]
. The number of lattice points inside the rectangle is  \[\frac{p-1}{2} \times \frac{q-1}{2}\]
.  The line from  \[(0,0)\]
  to  \[(p/2,q/2)\]
  has equation  \[y=\frac{q}{p}x\]
. Inside the rectangle the are no lattice points on the diagonal because if  \[(a,b)\]
  is such a point then  \[b=\frac{q} \rightarrow p | a{p}a\]
  and  \[q | b\]
, which forces  \[(a,b)\]
  outside the rectangle.Labelling the regions in the triangle above and below the diagonal from the origin to
\[(a,b)\]
. For  \[0 \lt k \lt \frac{p}{2}\]
  the number of lattice points in B lying directly above  \[(k,0)\]
  is  \[int( \frac{q}{p} k)\]
. Hence the total number of lattice points in B is  \[\alpha (q,p) = \sum_{k=1}^{(p-1)/2} int(\frac{q}{p}{k})\]
. In the same way the number of lattice points in A is  \[\alpha (p,q)\]
.We must have
\[\alpha (q,p)+ \alpha (p, q) = \frac{p-1}{2} \times \frac{q-1}{2}\]
.In terms of Legendre Symbols, using this Equation for Legendre Symbols, we have
\[\begin{equation} \begin{aligned} (p/q)(q/p) &= (-1)^{\alpha (p,q)} \times (-1)^{\alpha (q,p)} \\ &= (-1)^{\alpha (p,q)+ \alpha (q,p)} \\ &= (-1)^{(p-1)(q-1)/4} \end{aligned} \end{equation}\]