Call Us 07766496223
For what values of  
\[n\]
  is the sum of the divisors of  
\[n\]
  equal to 24?
The sum of the divisors of  
\[n\]
  is the divisor function  
\[\sigma (n)= \sum_{d | n} d\]
.  
\[\sigma (n)\]
  is multiplicative so that if  
\[a, \; b\]
  are relatively prime then  
\[\sigma (ab)= \sigma (a) \sigma (b)\]
.
\[24=2 \times 12=3 \times 8=4 \times 6\]

\[\sigma (n)=24 \]
  and 1 is always a divisor of  
\[n\]
  so we can take 23 as the other divisor and  
\[n=23\]
.
\[\sigma (n)=2 \times 12 =\sigma (a) \sigma (b)\]
.  
\[\sigma (a)=2\]
  has no solution since  
\[\sigma (1)=1, \sigma (2)=1+2=3\]
  so there is no such  
\[n\]
.
\[\sigma (n)=3 \times 8 =\sigma (a) \sigma (b)\]
.  
\[\sigma (a)=3 \rightarrow a=2\]
.  
\[\sigma (b)=8 \rightarrow b=7\]
  then  
\[n=ab=2 \times 7=14\]
. The divisors of 14 are 1, 2, 7, 14 and 1+2+7+14=24.
\[\sigma (n)=4 \times 6 =\sigma (a) \sigma (b)\]
.  
\[\sigma (a)=4 \rightarrow a=3\]
.  
\[\sigma (b)=6 \rightarrow b=5\]
  then  
\[n=ab=3 \times 5=15\]
. The divisors of 15 are 1, 3, 5, 15 and 1+3+5+15=24.