Theorem
Every bounded closed intervalis countably compact.
Proof
A subsetof a topological spaceis countably compact if every finite subsethas an accumulation point in
The Bolzano - Weierstrass Theorem states that every bounded infinite set of real numbers contains an accumulation point.
Thushas an accumulation pointSinceis cl;osed andthe accumulation pointofbelongs toHenceis countably compact.