Theorem
Letbe a T1 space. Ifis an accumulation point of a subsetofthen every open set containing a contains an infinite number of points of
Proof
Supposeis an accumulation point ofand supposeis an open subset of withand that
is a finite subset of a T1 space, so closed, andis open.
Letthenis open,anddoes not contain any points of different fromHenceis not an accumulation point of
The converse - that every open set containing a contains some point ofdifferent from- is true by definition of accumulation point.