Call Us 07766496223
Forced oscillations occur when a system is subject to an external periodic force  
\[f(t)\]
.
Simple harmonic oscillations in one dimension, with no damping and no external force the equation  
\[m \frac{d^2x}{dt^2}+ k x= A\]
. If a resistive force proportional to speed is present, the equation becomes  
\[m \frac{d^2x}{dt^2}+r \frac{dx}{dt}+ k x= A\]
. If now a forcing term  
\[f(t)\]
  is present, the equation becomes  
\[m \frac{d^2x}{dt^2}+r \frac{dx}{dt}+ k x= f(t)\]
.
The solution of this equation is the sum of two terms.
1. The complementary solution  
\[x_c\]
  of the homogeneous equation  
\[m\frac{d^2x}{dt^2}+r \frac{dx}{dt}+ k x=0\]
.
Assume a solution of the form  
\[x_c=Ae^{\lambda t}\]
  then  
\[\frac{dx}{dt}=A \lambda e^{\lambda t}, \; \frac{d^2x}{dt^2}=\lambda^2 Ae^{\lambda t}\]
  so the equation becomes  
\[m \lambda^2 Ae^{\lambda t}+r A \lambda e^{\lambda t}+ k A e^{\lambda t}= 0\]
.
Divide by  
\[e^{\lambda t} \neq 0\]
.
\[m \lambda^2 +r \lambda + k = 0 \rightarrow \lambda = \frac{-r \pm \sqrt{r^2-4mk}}{2m}\]
.
If  
\[r^2-4mk \gt 0\]
  then  
\[\lambda_1, \; \lambda_2\]
  are real and distinct, and  
\[x_p=Ae^{{\frac{-r + \sqrt{r^2-4mk}}{2m}}t}+Be^{{\frac{-r - \sqrt{r^2-4mk}}{2m}}t} \]
.
If  
\[r^2-4mk \lt 0\]
  then  
\[\lambda_1, \; \lambda_2\]
  are complex and distinct, and  
\[x_p=e^{- \frac{r}{2m}t}(Acos (\frac{\sqrt{4mk-r^2}}{2m}t) + Bsin (\frac{\sqrt{4mk-r^2}}{2m}t) ) \]
  If  
\[r^2-4mk = 0\]
  then  
\[\lambda_1, \; \lambda_2\]
  are equal, and  
\[x_p=e^{- \frac{r}{2m}} (A+Bt ) \]
.
Choose the particular solution  
\[y_p\]
  from this table, then  
\[x=x_c+x_p\]
..
The constants can be found from suitable initial conditions. If there is no resistive force then put  
\[r=0\]
  in the above solutions.