Disproving a statement is often simpler than a proof. Finding a counterexample will often suffice. Since a statement cannot be both true and false, if you find a counterexample, the statement must be false.
Example: Ifthen
This statement is 'obviously true', but ifand
then
but
so the statement is not true.
Ifand
are both greater than or equal to zero then the statement is true.
Formally, ifand
then
Example: Ifthen
Again the statement is true if only positive numbers are considered – it is also true if only negative numbers are considered. If one number is negative and the other is positive then the statement is false.
Takeand
then
but
Example: Ifand
are different irrational numbers, then
and
are both irrational.
Takeand
so that
and
so that
and
are both rational.
Example: Ifand
are different irrational numbers, then
and
are both irrational.
Takeand
so that
and
so that
and
are both rational.