## Proof By Contradiction

It is often possible to prove a statement is false by assuming that it is true. If it is true, then it should be consistent with all the other mathematical theorems which have been proved to be true. If we can show that it is not consisten with one or more of these other statements then we have shown that it is false.

Disproving a statement in this way is called 'proof by contradiction'. Proof by contradiction can be a tricky skill to learn.

Example: Prove that ifthenis irrational.

Suppose thatand thatis rational.

We can then writewhereandare integers, so the original equation becomes

Raising both sides to the power ofgives us

This means that amongs all the powers of 3, there is at least one power of 5, and amongst all the powers of 5 there is at least one power of 3. Both of these statements are false, so the statement, 'andis rational' is false.

Example: Prove thatis irrational.

Suppose thatis rational.

Write

Raise 2 to the power of both sides to givethen as beforeand amongst all the powers of 5 there is a power of 2 and amongst all the powers of 2 there is a power of 2.

Both these statements are false, so the statement 'is rational' is false.