Call Us 07766496223
Suppose a refrigerator of height  
\[h\]
  and depth  
\[d\]
  is being tilted. As it tilts its apparent height increases. What angle of tilt will result in the greatest apparent height?

apparent maximum height of tilting refrigerator

We can consider the apparent height of the refrigerator as being made up of two parts, one due the base and the other due to the vertical height.

apparent maximum height of tilting refrigerator

The apparent height is  
\[hcos \alpha + dsin \alpha\]
.
Let  
\[f(\alpha )=hcos \alpha + dsin \alpha\]
.
Then  
\[\frac{df}{d \alpha}=-hsin \alpha + dcos \alpha =0 \rightarrow tan \alpha = \frac{d}{h}\]
.
\[\frac{d^2f}{d \alpha^2}=-hcos \alpha - dsin \alpha \lt 0\]
  since  
\[\alpha\]
  is acute. The height is a maximum and
\[\begin{equation} \begin{aligned} f(\alpha)_{MAX}=d sin \alpha_{MAX}+hcos \alpha_{MAX} &= d/(cosec \alpha_{MAX})+h/(sec \alpha_{MAX}) \\ &= d/ \sqrt{1+cot^2 \alpha_{MAX}}+h/ \sqrt{1+tan \alpha_{MAX}} \\ &=d / \sqrt{1+h^2/d^2}_h/ \sqrt{1+d^2/h^2} \\ &= d^2/ \sqrt{d^2+h^2}+h^2/ \sqrt{d^2+h^2} \\ &= \sqrt{h^2+d^2} \end{aligned} \end{equation}\]