Draw a vertical line from G to the top side at P
then
\[tan 45=\frac{PB}{PG} \rightarrow 1=\frac{PB}{4}\rightarrow PB=4\]
Then
\[AB=x+4\]
By syymetry,
\[EF=x+4\]
and then \[FG=10-(x+x+4)=6-2x\]
The areas of ABGH and BCFG are equal.
\[\frac{1}{2}(x+x+4)(4)=(6-2x)(4) \rightarrow x+2=6-2x \rightarrow 3x=3x=4 \rightarrow x=\frac{4}{3}\]