Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; plgContentJComments has a deprecated constructor in /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php on line 25 Call Stack: 0.0000 360800 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0987 1209512 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0987 1209512 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1698 4190000 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1711 4217744 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1719 4235456 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1721 4265976 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1731 4288696 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1731 4288696 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.2256 4978560 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.2292 5170712 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.2298 5191640 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.2421 5397096 13. Joomla\CMS\Plugin\PluginHelper::importPlugin() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:189 0.2421 5397352 14. Joomla\CMS\Plugin\PluginHelper::import() /var/www/astarmathsandphysics/libraries/src/Plugin/PluginHelper.php:182 Deprecated: Methods with the same name as their class will not be constructors in a future version of PHP; JCommentsACL has a deprecated constructor in /var/www/astarmathsandphysics/components/com_jcomments/classes/acl.php on line 17 Call Stack: 0.0000 360800 1. {main}() /var/www/astarmathsandphysics/index.php:0 0.0987 1209512 2. Joomla\CMS\Application\SiteApplication->execute() /var/www/astarmathsandphysics/index.php:49 0.0987 1209512 3. Joomla\CMS\Application\SiteApplication->doExecute() /var/www/astarmathsandphysics/libraries/src/Application/CMSApplication.php:267 0.1698 4190000 4. Joomla\CMS\Application\SiteApplication->dispatch() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:233 0.1711 4217744 5. Joomla\CMS\Component\ComponentHelper::renderComponent() /var/www/astarmathsandphysics/libraries/src/Application/SiteApplication.php:194 0.1719 4235456 6. Joomla\CMS\Component\ComponentHelper::executeComponent() /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:356 0.1721 4265976 7. require_once('/var/www/astarmathsandphysics/components/com_content/content.php') /var/www/astarmathsandphysics/libraries/src/Component/ComponentHelper.php:381 0.1731 4288696 8. ContentController->execute() /var/www/astarmathsandphysics/components/com_content/content.php:42 0.1731 4288696 9. ContentController->display() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:710 0.2256 4978560 10. ContentController->display() /var/www/astarmathsandphysics/components/com_content/controller.php:113 0.2292 5170712 11. Joomla\CMS\Cache\Controller\ViewController->get() /var/www/astarmathsandphysics/libraries/src/MVC/Controller/BaseController.php:663 0.2298 5191640 12. ContentViewArticle->display() /var/www/astarmathsandphysics/libraries/src/Cache/Controller/ViewController.php:102 0.3712 13824016 13. JEventDispatcher->trigger() /var/www/astarmathsandphysics/components/com_content/views/article/view.html.php:199 0.3714 13824416 14. plgContentJComments->update() /var/www/astarmathsandphysics/libraries/joomla/event/dispatcher.php:160 0.3714 13824416 15. plgContentJComments->onContentAfterDisplay() /var/www/astarmathsandphysics/libraries/joomla/event/event.php:70 0.3716 13832664 16. plgContentJComments->onAfterDisplayContent() /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php:339 0.3719 13834400 17. JComments::show() /var/www/astarmathsandphysics/plugins/content/jcomments/jcomments.php:282 0.3725 13867448 18. JCommentsFactory::getACL() /var/www/astarmathsandphysics/components/com_jcomments/jcomments.php:188 0.3725 13867848 19. spl_autoload_call() /var/www/astarmathsandphysics/components/com_jcomments/classes/factory.php:274 0.3726 13867928 20. JLoader::load() /var/www/astarmathsandphysics/components/com_jcomments/classes/factory.php:274

Field Axioms

A field is a setthat is a commutative group with respect to two compatible operations, addition and multiplication, with "compatible" being formalized by distributivity, and the caveat that the additive identity (0) has no multiplicative inverse (one cannot divide by 0).

The most common way to formalize this is by defining a field as a set together with two operations, usually called addition and multiplication, and denoted byandrespectively, such that the following axioms hold;

Closure ofunder addition and multiplication
For all (or more formally,andare binary operations on).
Associativity of addition and multiplication
For alland
Commutativity of addition and multiplication
For all
Additive and multiplicative identity
There exists an element ofcalled the additive identity element and denoted by 0, such that for allLikewise, there is an element, called the multiplicative identity element and denoted by 1, such that for allThe additive identity and the multiplicative identity may not be the same.
Additive and multiplicative inverses
For everythere existssuch thatSimilarly, for any other than 0, there exists an elementsuch that(The elements andare denotedandrespectively.) In other words subtraction and division operations exist.
Distributivity of multiplication over addition
For all

Note that all but the last axiom are exactly the axioms for a commutative group, while the last axiom is a compatibility condition between the two operations.

Examples:are all fields as isfor n prime. The tables below are for a finite field with four elements.

0

1

A

B


0

1

A

B

0

0

0

0

0


0

0

1

A

B

1

0

1

A

B


1

1

0

B

A

A

0

A

B

1


A

A

B

0

1

B

0

B

A

1


B

B

A

1

0

Add comment

Security code
Refresh