Call Us 07766496223
Suppose a curve in  
\[\mathbb{R}^2\]
  is given parametrically by  
\[x=X( \alpha ), \; y=Y( \alpha ) \]
. In Cartesian coordinates the gradient of the curve at a point  
\[(x_0,y_0)\]
  is given by  
\[\frac{dy}{dx} |_{(x_0, \; y_0)}\]
. In the parametric coordinates the curve is using we must write  
\[\frac{dy/d \alpha}{dx/d \alpha} |_{(\alpha_0)}\]
, where  
\[(x_0, \; y_0)=(X( \alpha_0), \; Y( \alpha_0))\]
.
Example: The curve  
\[C \subset \mathbb{R}^2\]
  is defined parmetrically by  
\[x=cos 2 \alpha , \; y=2sin \alpha +3cos \alpha\]
. At  
\[(1,3)\]
,  
\[\alpha = 0\]
  and
\[\begin{equation} \begin{aligned} \frac{dy}{dx}_{1,3)} &= \frac{dy/d \alpha}{dx/d \alpha} |_{0} \\ &= \frac{-2sin \alpha}{2cos \alpha-3sin \alpha} |_0 \\ &= \frac{0}{2}=0\end{aligned} \end{equation}\]