Volume of a Torus

We can find the volume of a torus by considering it as a volume of revolution of a circle rotated about the origin.
Let a circle of radius  
\[a\]
  be centred at  
\[(0,b)\]
  with  
\[b \gt a\]
. The circle is rotated about the  
\[x\]
  axis.
The upper half of the circle has equation  
\[y_2=b+ \sqrt{a^2-x^2}\]
  and the lower half has equation  
\[y_1= b - \sqrt{a^2-x^2}\]
.
A volume element is given by
\[\begin{equation} \begin{aligned} dV &= (y^2_2-y^2_1) dx \\ &= (y_2+y_1)(y_2-y_1)dx \\ &= ((b+ \sqrt{a^2-x^2})+ (b - \sqrt{a^2-x^2}))((b+ \sqrt{a^2-x^2})- (b - \sqrt{a^2-x^2}))dx \\ &= (2b)( 2 \sqrt{a^2-x^2})dx \\ &= 4b \sqrt{a^2-x^2}dx \end{aligned} \end{equation}\]

The volume of the torus is
\[\begin{equation} \begin{aligned} V &= \pi \int^a_{-a} 4b \sqrt{a^2-x^2} dx \\ &= 8b \pi \int^a_0 \sqrt{a^2-x^2}dx \\ &= 8b \pi [ \frac{x \sqrt{a^2-x^2}}{2} + a sin^{-1} ( \frac{x}{a}) ]^a_0 \\ &= 8b \pi ( \frac{a^2}{2} \frac{\pi}{2}) \\ &=2 \pi^2 a^2b \end{aligned} \end{equation}\]

Add comment

Security code
Refresh