Call Us 07766496223
Suppose we have a system of  
\[n\]
  non homogeneous linear equations  
\[\sum^m_{j=1} a_{ij}x_j=b_i , \: i= 1,...,n\]
.
Suppose we have two solutions  
\[(x_1,...,x_m)\]
  and  
\[(x'_1,...,x'_m)\]
.
The difference between these two solutions,  
\[(x'_1-x_1,...,x'_m-x_m)\]
  is a solution to the homogeneous system of equations  
\[\sum^m_{j=1} a_{ij}x_j=0 , \: i= 1,...,n\]
.
Notice that these solutions satisfy  
\[\sum^m_{j=1} a_{ij}x_j=b_i , \: \sum^m_{j=1} a_{ij}x'_j=b_i, \: i= 1,...,n\]
.
Subtracting these gives the homogeneous system  
\[\sum^m_{j=1} a_{ij}(x'_j-x_j)=0, \: i= 1,...,n\]
  which is equivalent to the system  
\[\sum^m_{j=1} a_{ij}x_j=0 , \: i= 1,...,n\]
.