Call Us 07766496223
Suppose we a subspace  
\[\left\{ \begin{pmatrix}1\\0\\1\end{pmatrix} \right\}\]
  of  
\[\mathbb{R}^3\]
.
The orthogonal complement of  
\[S\]
  is the set of all vectors of  
\[\mathbb{R}^3\]
  orthogonal to every vector in  
\[S\]
.
Let  
\[ \mathbf{v} = \begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}\]
  be in the orthogonal complement of  
\[S\]
.
Then  
\[\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix} \cdot \begin{pmatrix}1\\0\\1\end{pmatrix}=v_1 + v_3=0\]
.
We can let  
\[v_1 =1, z: v_2 =-1\]
  so that one element of the complement of  
\[S\]
  is  
\[ \begin{pmatrix}1\\0\\-1\end{pmatrix}\]
.
The is no restriction on  
\[v_2\]
  so we can let another element of the complement of  
\[S\]
  be  
\[ \mathbf{v} = \begin{pmatrix}0\\1\\0\end{pmatrix}\]
.
The orthogonal complement to  
\[S\]
  is the space spanned by  
\[\left\{ \begin{pmatrix}1\\0\\-1\end{pmatrix} , \begin{pmatrix}0\\1\\0\end{pmatrix} \right\}\]
.