Call Us 07766496223
Let  
\[V\]
  be the vector space of  
\[n \times n\]
  matrices over a field  
\[K\]
  with the inner product  
\[\lt A, \; B \gt =Tr(B^*A)\]
.
The adjoint of left multiplication by  
\[M\]
  is left multiplication by  
\[M^*\]
  but left multiplication by  
\[M^*\]
  is the linear operator  
\[L_{M^*}\]
  such that  
\[L_{M^*}(A)=M^*A\]
.
\[\begin{equation} \begin{aligned} \lt L_M(A), \; B \gt &= Tr(B^*(MA)) \\ &= Tr(MAB^*) \\ &= Tr(AB^*M) \\ &=Tr(A(M^*B)^*) \\ &= \lt A, L_(M^*(B) \gt \end{aligned} \end{equation}\]

Hence  
\[(L_{M})^*=L_{M^*}\]
.