Cauchy's Polynomial Root Theorem

Let  
\[p(x+=6+2x^2-6x^4+4x^5-3x^6+x^8\]
.
We ca define a companion matrix for  
\[p(x)\]
  as  
\[A= \left( \begin{array}{cccccccc} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -6 & 0 & -2 & 0 & 6 & -4 & 3 & 0 \end{array} \right)\]

Notes that  
\[det(P- xI)=p(x)\]

There is an identity matrix in the top right, and the bottom row consists of the negative coefficients in ascending powers of  
\[x\]
.
The largest coefficient of  
\[x\]
  is 6. Apply Gershgorin's Theorem to find a restriction on the eigenvalues of this matrix.
\[r= Max \{ \| 6 \| , \; 1+ \| 0 \| , \; 1+ \| 2 \| , \; \; 1+ \| 0 \| , \; \; 1+ \| -6 \| , \; 1+ \| 4 \| , \; \; 1+ \| -3 \| , \; 1+ \| 0 \| , \; \; 1+ \| 1 \| \}=7\]

All the roots of  
\[p(x)\]
 lie in a circle of radius 7
This is called Cauchy's polynomial root theorem.

Add comment

Security code
Refresh