The possible genotype for the parents 1st generation are AA, Aa and aa. The possible pairings are 1 - AA x AA, 2 - AA x Aa, 3 - Aa x Aa, 4 - Aa x aa, 5 - aa x aa, AA x aa. We can construct the table for the probabilities of the genotypes of Generation 2.
Generation 1\Generation 2 | AA x AA | AA x Aa | Aa x Aa | Aa x aa | aa x aa | AA x aa |
AA x AA | 1 | 0 | 0 | 0 | 0 | 0 |
AA x Aa | 1/4 | 1/2 | 1/4 | 0 | 0 | 0 |
Aa x Aa | 1/16 | 1/4 | 1/4 | 1/4 | 1/6 | 1/8 |
Aa x aa | 0 | 0 | 1/4 | 1/2 | 1/4 | 0 |
aa x aa | 0 | 0 | 0 | 0 | 1 | 0 |
AA x aa | 0 | 0 | 1 | 0 | 0 | 0 |
Generation 1\Generation 2 | AA x AA | aa x aa | AA x Aa | Aa x Aa | Aa x aa | AA x aa |
AA x AA | 1 | 0 | 0 | 0 | 0 | 0 |
aa x aa | 0 | 1 | 0 | 0 | 0 | 0 |
AA x Aa | 1/4 | 0 | 1/2 | 1/4 | 0 | 0 |
Aa x Aa | 1/16 | 1/16 | 1/4 | 1/4 | 1/4 | 1/8 |
Aa x aa | 0 | 1/4 | 0 | 1/4 | 1/2 | 0 |
AA x aa | 0 | 0 | 0 | 1 | 0 | 0 |
\[\left( \begin{array}{cc} I & O \\ S & Q \end{array} \right)\]
where\[I=\left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \; O= \left( \begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right), \; S= \left( \begin{array}{cc} 1/4 & 0 \\ 1/16 & 1/16 \\ 0 & 1/4 \\ 0 & 0 \end{array} \right), \; Q= \left( \begin{array}{cccc} 1/2 & 1/4 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/8 \\ 0 & 1/4 & 1/2 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right)\]
Pick out the 4 x 4 matrix in the lower right.
\[Q= \left( \begin{array}{cccc} 1/2 & 1/4 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/8 \\ 0 & 1/4 & 1/2 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right)\]
The fundamental matrix is
\[F=(I-Q)^{-1}= \left( \begin{array}{cccc} 8/3 & 4/3 & 2/3 & 1/6 \\ 4/3 & 8/3 & 4/3 & 1/3 \\ 2/3 & 4/3 & 8/3 & 1/6 \\ 4/3 & 8/3 & 4/3 & 4/3 \end{array} \right)\]
.\[(I-Q)^{-1}S= \left( \begin{array}{cc} 1/4 & 1/4 \\ 1/2 & 1/2 \\ 1/4 & 1/4 \\ 1/2 & 1/2 \end{array} \right) \]
.These columns correspond to AA x AA and aa x aa, so after repeated inbreeding the genotype is either AA or aa.