The table of transition probabilities is - from experience:
From\To | Paid | Bad Debt | Owing | Overdue |
Paid | 1 | 0 | 0 | 0 |
Bad Debt | 0 | 1 | 0 | 0 |
Owing | 0.5 | 0 | 0.3 | 0.2 |
Overdue | 0.4 | 0.3 | 0.2 | 0.1 |
The transition matrix is
\[A= \left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0.5 & 0 & 0.3 & 0.2 \\ 0.4 & 0.3 & 0.2 & 0.1 \end{array} \right)\]
We can write this as
\[A= \left( \begin{array}{cc} I & O \\ K & M \end{array} \right)\]
where\[I= \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \; O= \left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \; K= \left( \begin{array}{cc} 0.5 & 0 \\ 0.4 & 0.3 \end{array} \right), \; M= \left( \begin{array}{cc} 0.3 & 0.2 \\ 0.2 & 0.1 \end{array} \right)\]
Then
\[(I-M)^{-1}K= \left( \begin{array}{cc} 0.8983 & 0.1017 \\ 0.6441 & 0.3559 \end{array} \right)\]
.This is a matrix of transition probabilities from
\[(Owing, Overdue)\]
to \[(Paid, Bad \; Debts)\]
.
\[(4500 \; 2000) \left( \begin{array}{cc} 0.8983 & 0.1017 \\ 0.6441 & 0.3559 \end{array} \right)=(5330.55 \; 1169.45)\]
.It is predicted that £5330.55 will be paid and £1169.45 will turn into bad debts.