
| Winner\Loser | A | B | C | D | E | F | 
| A | 0 | 0 | 1 | 1 | 1 | 0 | 
| B | 1 | 0 | 0 | 1 | 1 | 0 | 
| C | 0 | 1 | 0 | 1 | 0 | 1 | 
| D | 0 | 0 | 0 | 0 | 1 | 1 | 
| E | 0 | 0 | 1 | 0 | 0 | 0 | 
| F | 1 | 1 | 0 | 0 | 1 | 0 | 
The matrix of the table is:
\[M= \left( \begin{array}{cccccc} 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0\end{array}  \right)\]
\[M^2= \left( \begin{array}{cccccc} 0 & 1 & 1 & 1 & 1 & 2 \\ 0 & 0 & 2 & 1 & 2 & 1 \\ 2 & 1 & 0 & 1 & 3 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 2 & 2 & 2 & 0\end{array}  \right)\]
  represents the two step wins (team 1 loses to team 2, but beat team 3 who also beat team 2). We can use  \[M+M^2=  \left( \begin{array}{cccccc} 0 & 1 & 2 & 2 & 2 & 2 \\ 1 & 0 & 2 & 2 & 3 & 1 \\ 2 & 2 & 0 & 2 & 3 & 2 \\ 1 & 1 & 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 2 & 1 & 2 & 2 & 3 & 0\end{array}  \right)\]
.Adding up the rows gives 9 for team A, 9 for team B,11 for team C, 6 for team D, 4 for team E and 10 for team F. Team C wins, and the teams are ranked C, F, A=B, D,E.